PDZ-Containing Proteins Provide a Functional Postsynaptic Scaffold for Nicotinic Receptors in Neurons
نویسندگان
چکیده
Protein scaffolds are essential for specific and efficient downstream signaling at synapses. Though nicotinic receptors are widely expressed in the nervous system and influence numerous cellular events due in part to their calcium permeability, no scaffolds have yet been identified for the receptors in neurons. Here we show that specific members of the PSD-95 family of PDZ-containing proteins are associated with specific nicotinic receptor subtypes. At postsynaptic sites, the PDZ scaffolds are essential for maturation of functional nicotinic synapses on neurons. They also help mediate downstream signaling as exemplified by activation of transcription factors. By tethering components to postsynaptic nicotinic receptors, PDZ scaffolds can organize synaptic structure and determine which calcium-dependent processes will be subject to nicotinic modulation.
منابع مشابه
PDZ Domain-Mediated Interactions of G Protein-Coupled Receptors with Postsynaptic Density Protein 95: Quantitative Characterization of Interactions
G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome. Their signaling is regulated by scaffold proteins containing PDZ domains, but although these interactions are important for GPCR function, they are still poorly understood. We here present a quantitative characterization of the kinetics and affinity of interactions between GPCRs and one o...
متن کاملPDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.
G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-inte...
متن کاملA novel mechanism for nicotinic potentiation of glutamatergic synapses.
Selective strengthening of specific glutamatergic synapses in the mammalian hippocampus is critical for encoding new memories. This is most commonly achieved by input-specific Hebbian-type plasticity involving glutamate-dependent coincident presynaptic and postsynaptic depolarization. Our results demonstrate a novel mechanism by which nicotinic signaling, independently of coincident fast glutam...
متن کاملMPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density
At neuronal synapses, multiprotein complexes of trans-synaptic adhesion molecules, scaffold proteins and neurotransmitter receptors assemble to essential building blocks required for synapse formation and maintenance. Here we describe a novel role for the membrane-associated guanylate kinase (MAGUK) protein MPP2 (MAGUK p55 subfamily member 2) at synapses of rat central neurons. Through interact...
متن کاملThe Shank family of scaffold proteins.
Shank proteins make up a new family of scaffold proteins recently identified through their interaction with a variety of membrane and cytoplasmic proteins. Shank polypeptides contain multiple sites for protein-protein interaction, including ankyrin repeats, an SH3 domain, a PDZ domain, a long proline-rich region, and a SAM domain. Binding partners for most of these domains have been identified:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 38 شماره
صفحات -
تاریخ انتشار 2003